If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+4=16
We move all terms to the left:
a^2+4-(16)=0
We add all the numbers together, and all the variables
a^2-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $
| 5.5(2)+2x=45.15 | | 5/(x+22)=87/2 | | 7x+31=4(x+1) | | 5(r-1)=2(r=4)-6 | | 5/10=u/8 | | 12^x+2=10.25 | | 6x+24-2x=15-x | | 2(x+3)=4x+3x+9 | | -3x+16=-2x+10 | | 9=-30b | | 18-16-12x-0.5=18x-2 | | -3y=-2+.5y-5 | | 3x+4=12.75 | | A=6x+5 | | 9-6b=-36b | | A=6x+5∘ | | 3(x+5)=30-5 | | 6t-8=2(2t+7) | | 8/x=30/5 | | 3(x-5)=-14+7x= | | A=6x−35 | | 3*47=3a | | 13y+31=57 | | -3n-2=5 | | 96=-6-4-3y= | | A=6x−35∘ | | 36=17a | | 9+64*(20-8)/2+6=x | | 5/6x+25=45 | | 7=15x-3 | | 151=-8d+7 | | 5(6x-3)-3(3x-13)=5(4x+1)-1 |